

DATA SHEET

GENERAL PURPOSE CHIP RESISTORS RC1218 (Pb Free) 5%; 1%

YAGEO

Chip Resistor Surface Mount

 \cap

SERIES

1218 (Pb Free)

SCOPE

This specification describes RC1218 series chip resistors with lead-free terminations made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO ORDERING CODE

CTC CODE

RC1218 X X X XX XXXX L

(1) (2) (3) (4) (5) (

(I) TOLERANCE

 $F = \pm 1\%$ $J = \pm 5\%$

(2) PACKAGING TYPE

K = Embossed taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(4) TAPING REEL

07 = 7 inch dia, Reel

(5) RESISTANCE VALUE

5R6, 56R, 560R, 5K6, 56K, 22M.

(6) RESISTOR TERMINATIONS

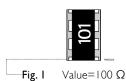
L = Lead free terminations (pure Tin)

ORDERING EXAMPLE

The ordering code of a RC1218 chip resistor, value 56 Ω with ±1% tolerance, supplied in 7-inch tape reel is: RC1218FK-0756RL.

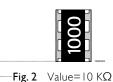
NOTE

- The "L" at the end of the code is only for ordering. On the reel label, the standard CTC will be mentioned an additional stamp "LFP"= lead free production.
- Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- Products with lead in terminations will be phased out in the coming months (before July 1st, 2006)



Chip Resistor Surface Mount RC SERIES

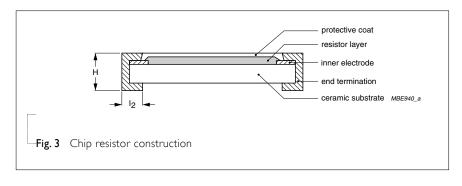
MARKING


RC1218

E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

1218 (Pb Free)


Both E-24 and E-96 series: 4 digits

First three digits for significant figure and 4th digit for number of zeros

For marking codes, please see EIA-marking code rules in data sheet "Chip resistors instruction".

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the

resistance value. Finally, the two external terminations (pure Tin) are added. See fig. 3.

<u>DIMENSIONS</u>

Table I	
TYPE	RC1218
L (mm)	3.10 ±0.10
W (mm)	4.60 ±0.10
H (mm)	0.55 ±0.10
I _I (mm)	0.45 ±0.20
I ₂ (mm)	0.40 ±0.20

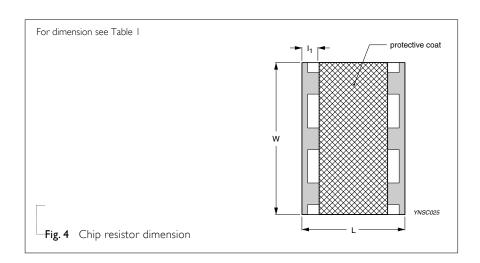


Table 2

Chip Resistor Surface Mount RC SERIES

ELECTRICAL CHARACTERISTICS

labic 2		
CHARACTERISTICS		RC1218 I W
Operating Temperature Range	-55	°C to +155 °C
Maximum Working Voltage		200 V
Maximum Overload Voltage		500 V
Dielectric Withstanding Voltage		500 V
	5% (E24)	Ι Ω to Ι ΜΩ
Resistance Range	1% (E96)	Ι Ω to Ι ΜΩ
	Zero Ohm Ju	mper < 0.02 Ω
Temperature Coefficient	$10 \Omega < R \le 1 M\Omega$	±100 ppm/°C
Temperature Coemcient	$1 \Omega < R \le 10 \Omega$	±200 ppm/°C
Jumper Criteria	Rated Current	6.0 A
Juniper Criteria	Maximum Current	10.0 A

<u>FOOTPRINT AND SOLDERING</u> <u>PROFILES</u>

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
RC1218	Embossed taping reel (K)	7" (178 mm)	4,000 units

1218 (Pb Free)

NOTE

1. For embossed tape and reel specification/dimensions, please see the special data sheet "Packing" document.

SERIES

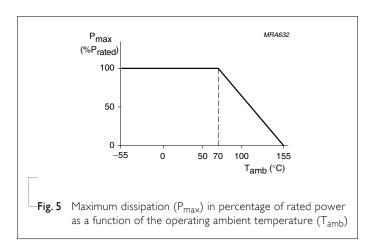
FUNCTIONAL DESCRIPTION

POWER RATING

RCI218 rated power at 70°C is I W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V=\sqrt{(P \times R)}$$

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

PULSE LOADING CAPABILITIES

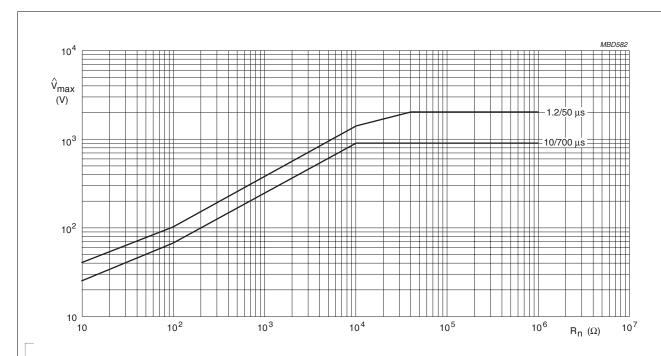


Fig. 6 Maximum permissible peak pulse voltage without failing to open circuit' in accordance with DIN IEC 60040 (CO) 533 for type: RC1218

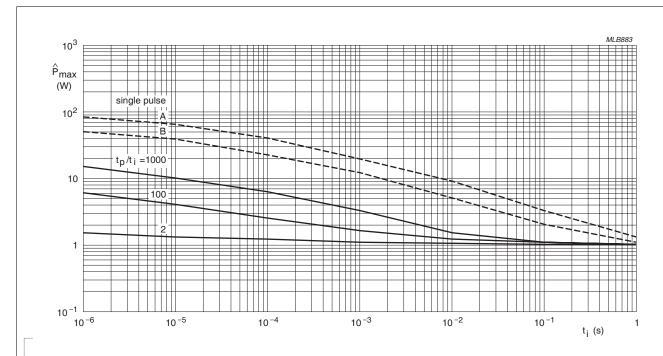


Fig. 7 Pulse on a regular basis for type: RC1218; maximum permissible peak pulse power as a function of pulse duration for single pulse and repetitive pulse tp/ti = 1000

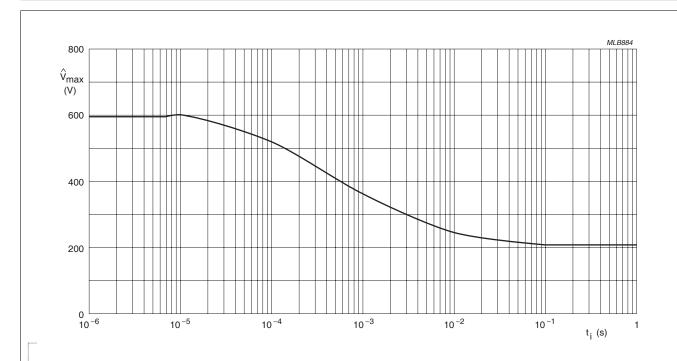
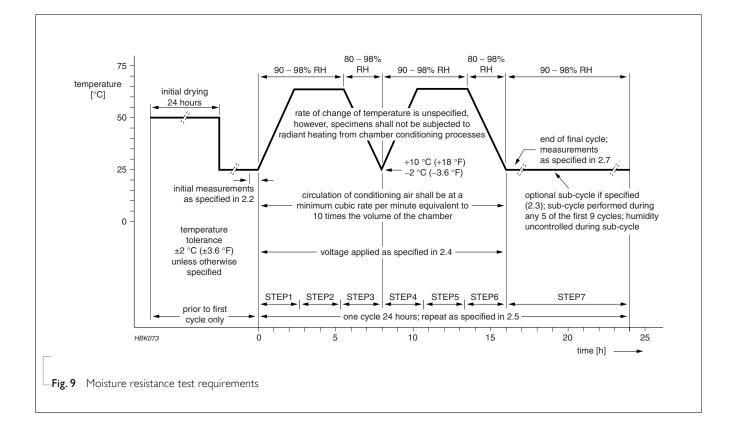


Fig. 8 Pulse on a regular basis for type: RC1218; maximum permissible peak pulse voltage as a function of pulse duration

TESTS AND REQUIREMENTS


Table 4 Test condition, procedure and requirements

ΓEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	MIL-STD-202F-method 304;	At +25/–55 °C and +25/+125 °C	Refer to table 2
Coefficient of	JIS C 5202-4.8	Famoula	
Resistance (T.C.R.)		Formula:	
(1.6.1.1)		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t_2 =-55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +155	$\pm (0.5\% \pm 0.05~\Omega)$ for 1% tol.
	IEC 60115-1 4.19	(+10/-0) °C for 2 minutes; 25 cycles	\pm (1.0%+0.05 Ω) for 5% tol.
Low	MIL-R-55342D-Para 4.7.4	At -65 (+0/-5) °C for I hour; RCWV applied	\pm (0.5%+0.05 Ω) for 1% tol
Temperature		for 45 (+5/–0) minutes	\pm (1.0%+0.05 Ω) for 5% tol.
Operation			No visible damage
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	$\pm (1.0\% + 0.05 \ \Omega)$ for 1% tol.
Overload	IEC 60115-1 4.13	temperature	$\pm (2.0\% + 0.05 \ \Omega)$ for 5% tol.
			No visible damage
Insulation	MIL-STD-202F-method 302;	RCOV for 1 minute	≥10 GΩ
Resistance	IEC 60115-1 4.6.1.1	Type RC1218	
		Voltage (DC) 500 V	
Dielectric	MIL-STD-202F-method 301;	Maximun voltage (V _{rms}) applied for 1 minute	No breakdown or flashover
Withstand Voltage	IEC 60115-1 4.6.1.1	Type RCI2I8	
		Voltage (AC) 500 V _{rms}	
		300 V _{ms}	
Resistance to	MIL-STD-202F-method 210C;	Unmounted chips; 260 ±5 °C for 10 ±1	\pm (0.5%+0.05 Ω) for 1% tol.
Soldering	IEC 60115-1 4.18	seconds	$\pm (1.0\% + 0.05 \ \Omega)$ for 5% tol.
Heat			No visible damage
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	$\pm (1\% + 0.05 \ \Omega)$ for 1% tol.
	IEC 60115-1 4.25.1	1.5 hours on and 0.5 hour off	$\pm (3\% + 0.05 \Omega)$ for 5% tol.

Chip Resistor Surface Mount RC SERIES 1218 (Pb Free)

MIL-STD-202F-method 208A; IEC 60115-1 4.17 JIS C 5202.6.14;	Solder bath at 245±3 °C Dipping time: 2±0.5 seconds	Well tinned (≥95% cove	ered)
	Dipping time: 2±0.5 seconds	No visible demage	
IIS C F202 (14.		No visible damage	
JIS C 3202.6.14;	Resistors mounted on a 90 mm glass epoxy	\pm (1.0%+0.05 Ω) for 1%	6 tol.
IEC 60115-1 4.15	resin PCB (FR4)	$\pm (1.0\% + 0.05~\Omega)$ for 5% tol. No visible damage	
	Bending: 2 mm		
MIL-STD-202F-method 215;	Isopropylalcohol (C ₃ H ₇ OH) or dichloromethane	No smeared	
IEC 60115-1 4.29	(CH ₂ Cl ₂) followed by brushing		
JIS C 5202 5.9;	Maximum voltage (V _{ms}) applied.	Resistors range	Value
IEC 60115-1 4.12		R < 100 Ω	10 dB
		$100 \Omega \le R < 1 K\Omega$	24 dB
		$1 \text{ K}\Omega \leq R < 10 \text{ K}\Omega$	34 dB
		$10 \text{ K}\Omega \leq R < 100 \text{ K}\Omega$	44 dB
		$100 \text{ K}\Omega \leq R < 1 \text{ M}\Omega$	46 dB
		$1 \text{ M}\Omega \leq R \leq 22 \text{ M}\Omega$	48 dB
JIS C 5202 7.5;	I,000 hours; 40±2 °C; 93(+2/-3)% RH	$\pm (0.5\% \pm 0.05~\Omega)$ for 1% tol. $\pm (2.0\% \pm 0.05~\Omega)$ for 5% tol.	
IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off		
EIA/IS 4.13B;	Solder bath at 260±5 °C	No visible damage	
IEC 60115-8 4.18	Dipping time: 30±1 seconds		
JIS C 5202 5.8	At room temperature; 2.5 × RCWV applied for I second on and 25 seconds off; total 10,000 cycles	$\pm (1.0\% + 0.05 \ \Omega)$ for 1% tol. $\pm (2.0\% + 0.05 \ \Omega)$ for 5% tol.	
On request	On request		
MIL-STD-202F-method 106F;	42 cycles; total 1,000 hours	\pm (0.5%+0.05Ω) for 1%	tol.
IEC 60115-1 4.24.2	Shown as figure 9	$\pm (2.0\% + 0.05\Omega)$ for 5% tol.	
		No visible damage	
	MIL-STD-202F-method 215; IEC 60115-1 4.29 JIS C 5202 5.9; IEC 60115-1 4.12 JIS C 5202 7.5; IEC 60115-8 4.24.8 EIA/IS 4.13B; IEC 60115-8 4.18 JIS C 5202 5.8 On request MIL-STD-202F-method 106F;	Bending: 2 mm	$\label{eq:bending:2mm} \begin{tabular}{ll} Bending:2 mm & No visible damage \\ \hline MIL-STD-202F-method 215; \\ IEC 60115-1 4.29 & (CH_2Cl_2) followed by brushing \\ \hline JIS C 5202 5.9; \\ IEC 60115-1 4.12 & Maximum voltage (V_{ms}) applied. & Resistors range \\ \hline R < 100 \ \Omega \\ \hline 100 \ \Omega \le R < 1 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R < 100 \ K\Omega \\ \hline 100 \ K\Omega \le R$

Product specification 10

 Chip Resistor Surface Mount
 RC
 SERIES
 1218 (Pb Free)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Oct 13, 2004	-	- Test method and procedure updated