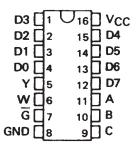
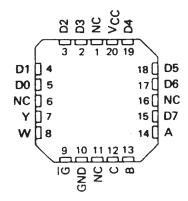
- Three-State Versions of '151, 'LS151, 'S151
- Three-State Outputs Interface Directly with System Bus
- Perform Parallel-to-Serial Conversion
- Permit Multiplexing from N-lines to One Line
- Complementary Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL Circuits


| TYPE      | MAX NO. OF COMMON OUTPUTS | TYPICAL AVG PROP<br>DELAY TIME<br>(D TO Y) | TYPICAL<br>POWER<br>DISSIPATION |
|-----------|---------------------------|--------------------------------------------|---------------------------------|
| SN54251   | 49                        | 17 ns                                      | 250 mW                          |
| SN74251   | 129                       | 17 ns                                      | 250 mW                          |
| SN54LS251 | 49                        | 17 ns                                      | 35 mW                           |
| SN74LS251 | 129                       | 17 ns                                      | 35 mW                           |
| SN54S251  | 39                        | 8 ns                                       | 275 mW                          |
| SN74S251  | 129                       | 8 ns                                       | 275 mW                          |
|           |                           |                                            |                                 |

#### description


These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources and feature a strobe-controlled three-state output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the 'average output disable time is shorter than the average output enable time. The SN54251 and SN74251 have output clamp diodes to attenuate reflections on the bus line.

SN54251, SN54LS251, SN54S251 . . . J OR W PACKAGE SN74251 . . . N PACKAGE SN74LS251, SN74S251 . . . D OR N PACKAGE (TOP VIEW)



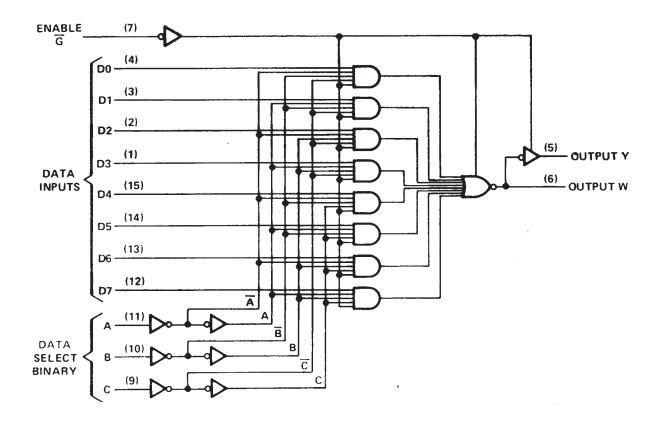
SN54LS251, SN54S251 . . . FK PACKAGE (TOP VIEW)



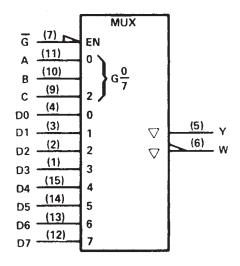
NC - No internal connection

#### **FUNCTION TABLE**

|   | 11   | VPUT | S      | OUT | PUTS |
|---|------|------|--------|-----|------|
| S | ELEC | T    | ENABLE | v   | w    |
| С | В    | Α    | G      |     | **   |
| X | Х    | ×    | н      | z   | Z    |
| L | L    | L    | L      | D0  | DO   |
| L | L    | н    | L      | D1  | DI   |
| L | н    | Ł    | L      | D2  | D2   |
| L | н    | Н    | L      | D3  | D3   |
| н | L    | L    | L      | D4  | D4   |
| н | L    | н    | L      | D5  | D5   |
| н | н    | L    | L      | D6  | D6   |
| н | н    | н    | L      | D7  | D7   |


H = high logic level, L = low logic level

X = irrelevant, Z = high impedance (off)


D0, D1 . . . D7 = the level of the respective D input

#### SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

# logic diagram (positive logic)



# logic symbol†



 $<sup>^{\</sup>dagger}$  This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.



# SN54251 SN74251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note 1) |           |  |      | <br> |  |  |  |   |      |       | 7 V   |
|----------------------------------------------|-----------|--|------|------|--|--|--|---|------|-------|-------|
| Input voltage                                |           |  |      | <br> |  |  |  |   |      |       | 5.5 V |
| Off-state output voltage                     |           |  |      | <br> |  |  |  | • |      |       | 5.5 V |
| Operating free-air temperature range         | : SN54251 |  | <br> | <br> |  |  |  |   | –55° | °C to | 125°C |
|                                              | SN74251   |  |      |      |  |  |  |   |      |       |       |
| Storage temperature range                    |           |  |      | <br> |  |  |  |   | -65° | 'C to | 150°C |

NOTE 1: Voltage values are with respect to network ground terminal.

# recommended operating conditions

|                                    |     | SN5425 | 1   |      | SN7425 | 1    | UNIT  |
|------------------------------------|-----|--------|-----|------|--------|------|-------|
|                                    | MIN | NOM    | MAX | MIN  | NOM    | MAX  | DIVIT |
| Supply voltage, V <sub>CC</sub>    | 4.5 | 5      | 5.5 | 4.75 | 5      | 5.25 | ٧     |
| High-level output current, IOH     |     |        | -2  |      |        | -5.2 | mA    |
| Low-level output current, IOL      |     |        | 16  |      |        | 16   | mA    |
| Operating free-air temperature, TA | -55 |        | 125 | 0    |        | 70   | °C    |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                | PARAMETER                                       | TEST COND                                         | ITIONS <sup>†</sup>                              | MIN | TYP‡ | MAX            | UNIT |
|----------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----|------|----------------|------|
| VIH            | High-level input voltage                        |                                                   |                                                  | 2   | -    |                | V    |
| VIL            | Low-level input voltage                         |                                                   |                                                  |     |      | 0.8            | V    |
| VIK            | Input clamp voltage                             | V <sub>CC</sub> = MIN, I <sub>I</sub>             | = -12 mA                                         |     |      | -1.5           | V    |
| Vон            | High-level output voltage                       | **                                                | H = 2 V,<br>H = MAX                              | 2.4 | 3.2  |                | ٧    |
| VOL            | Low-level output voltage                        | , ,                                               | H = 2 V,<br>L = 16 mA                            |     | 0.2  | 0.4            | ٧    |
| loz            | Off-state (high-impedance-state) output current | V <sub>CC</sub> = MAX,<br>V <sub>IH</sub> = 2 V   | V <sub>O</sub> = 2.4 V<br>V <sub>O</sub> = 0.4 V |     |      | 40<br>-40      | μА   |
| v <sub>o</sub> | Output clamp voltage                            | V <sub>CC</sub> = MAX,<br>V <sub>IH</sub> = 4.5 V | I <sub>O</sub> = -12 mA                          |     | V    | -1.5<br>CC+1.5 | ٧    |
| Ťį             | Input current at maximum input voltage          | V <sub>CC</sub> = MAX, V <sub>I</sub>             | = 5.5 V                                          |     |      | 1              | mA   |
| ħН             | High-level input current                        | V <sub>CC</sub> = MAX, V <sub>I</sub>             | = 2.4 V                                          |     |      | 40             | μА   |
| HL             | Low-level input current                         | V <sub>CC</sub> = MAX, V <sub>I</sub>             | = 0.4 V                                          |     |      | -1.6           | mA   |
| los            | Short-circuit output current §                  | V <sub>CC</sub> = MAX                             |                                                  | -18 |      | -55            | mA   |
| Icc            | Supply current                                  | V <sub>CC</sub> = MAX, All All outputs open       | l inputs at 4.5 V,                               |     | 38   | 62             | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ} \text{C}$ .

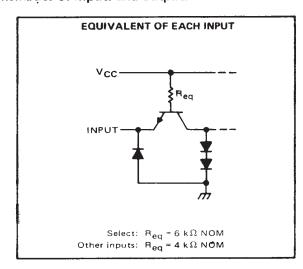
Not more than one output should be shorted at a time.

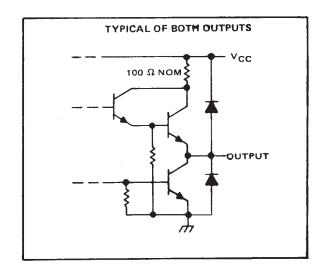
# switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER†       | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS      | MIN TYP | MAX | UNIT     |
|------------------|-----------------|----------------|----------------------|---------|-----|----------|
| <sup>t</sup> PLH | A, B, or C      | · Y            |                      | 29      | 45  | ns       |
| tPHL             | (4 levels)      | '              | j                    | 28      | 45  | 1115     |
| <b>TPLH</b>      | A, B, or C      | w              | 1                    | 20      | 33  | ns       |
| tPHL .           | (3 levels)      |                |                      | 21      | 33  | ] "      |
| ФLH              | Any D           | Y              | Cլ = 50 pF,          | 17      | 28  | ns       |
| <b>PHL</b>       | ם עוויס         | '              | $R_L = 400 \Omega$ , | 18      | 28  | ] "      |
| <sup>t</sup> PLH | Any D           | w              | See Note 2           | 10      | 15  | ns       |
| ФНL              | Ally D          |                | Sec ivote 2          | 9       | 15  | l '''.   |
| <sup>†</sup> PZH | G .             | Y              |                      | 17      | 27  | I        |
| <sup>t</sup> PZL |                 | 1              |                      | 26      | 40  | ns       |
| <sup>t</sup> PZH | G               | W              |                      | 17      | 27  | ns       |
| <sup>†</sup> PZL |                 | "              |                      | 24      | 40  | ] '''    |
| tPHZ             | Ğ               | Y              | Cլ = 5 pF,           | 5       | 8   | ns       |
| <sup>t</sup> PLZ |                 | w              | $R_L = 400 \Omega$ , | 15      | 23  | <u> </u> |
| <sup>t</sup> PHZ | G               |                | See Note 2           | 5       | 8   | ns       |
| tPLZ             | 1               | **             | See 140(e 2          | 15      | 23  | ] '''    |

 $<sup>^{\</sup>dagger}t_{PLH}$  = Propagation delay time, low-to-high-level output

tpZH = Output enable time to high level


tpZL = Output enable time to low level


tpHZ = Output disable time from high level

tPLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

## schematics of inputs and outputs





tpHL = Propagation delay time, high-to-low-level output

# SN54LS251 SN74LS251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note 1) |             | <br> |  |  |  |      |       |   |  |    |    |    |      | , 7 V   | • |
|----------------------------------------------|-------------|------|--|--|--|------|-------|---|--|----|----|----|------|---------|---|
| Input voltage                                |             | <br> |  |  |  |      |       |   |  | .• |    |    |      | . 7 V   | 1 |
| Off-state output voltage                     |             | <br> |  |  |  |      |       |   |  |    |    |    |      | . 5.5 V | 1 |
| Operating free-air temperature range         | : SN54LS251 |      |  |  |  |      |       |   |  |    | 5  | 5° | C to | o 125°C | , |
|                                              | SN74LS251   |      |  |  |  |      |       |   |  |    |    |    |      |         |   |
| Storage temperature range                    |             |      |  |  |  | <br> | <br>_ | _ |  |    | -6 | 5° | C to | o 150°C | ; |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|     |                                | s    | 4.5 5 | :51 | S    | N74LS2 | 251   | LINIT |
|-----|--------------------------------|------|-------|-----|------|--------|-------|-------|
|     |                                | MIN  | NOM   | MAX | MIN  | NOM    | MAX   | UNIT  |
| Vcc | Supply voltage                 | 4.5  | 5     | 5.5 | 4.75 | 5      | 5.25  | V     |
| VIH | High-level input voltage       | 2    |       |     | 2    |        |       | V     |
| VIL | Low-level input voltage        |      |       | 0.7 |      |        | 0.8   | V     |
| Тон | High-level output current      |      |       | - 1 |      |        | - 2.6 | mA    |
| IOL | Low-level output current       |      |       | 4   |      |        | 8     | mA    |
| TA  | Operating free-air temperature | - 55 |       | 125 | 0    |        | 70    | °C    |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED       |                                                 | TEST COM                 | DITIONST  |                        | S    | N54LS2 | 51    | SI   | N74LS2 | 51    | UNIT |
|-----------------|-------------------------------------------------|--------------------------|-----------|------------------------|------|--------|-------|------|--------|-------|------|
| PARAMETER       |                                                 | TEST CON                 | DITIONS   |                        | MIN  | TYP ‡  | MAX   | MIN  | TYP\$  | MAX   | UNIT |
| V <sub>IK</sub> | V <sub>CC</sub> = MIN,                          | I <sub>I</sub> = - 18 mA |           |                        |      |        | - 1.5 |      |        | - 1.5 | V    |
| V <sub>OH</sub> | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = MAX | V <sub>IH</sub> = 2 V,   | VIL = MAX |                        | 2.4  | 3.4    |       | 2.4  | 3.1    |       | ٧    |
| \/              | VCC = MIN,                                      | V <sub>1H</sub> = 2 V,   |           | IOL = 4 mA             |      | 0.25   | 0.4   |      | . 0.25 | 0.4   | V    |
| VOL             | VIL = MAX                                       |                          |           | 10L = 8 mA             |      |        |       |      | 0.35   | 0.5   | ľ    |
| 1               | V <sub>CC</sub> = MAX,                          | = 2.V                    |           | V <sub>O</sub> = 2.7 V |      |        | - 20  |      |        | 20    | μА   |
| loz             | VCC - MAA,                                      | VIH - 2 V                |           | V <sub>O</sub> = 0.4 V |      |        | 20    |      |        | - 20  | μΑ.  |
| 11              | V <sub>CC</sub> = MAX,                          | V <sub>1</sub> = 7 V     |           |                        |      |        | 0.1   |      |        | 0.1   | mA   |
| Чн              | V <sub>CC</sub> = MAX,                          | V <sub>1</sub> = 2.7 V   |           |                        |      |        | 20    |      |        | 20    | μА   |
| Enable G        | V <sub>CC</sub> = MAX,                          | V. = 0.4                 |           |                        |      |        | - 0.2 |      |        | 0.2   | mA   |
| All other       | VCC - MAA,                                      | V 1 - 0.4                |           |                        |      |        | - 0.4 |      |        | - 0.4 | 1112 |
| los§            | V <sub>CC</sub> = MAX                           |                          |           |                        | - 30 |        | - 130 | - 30 |        | - 130 | mA   |
|                 |                                                 |                          |           | Condition A            |      | 6.1    | 10    |      | 6.1    | 10    | mA   |
| 'cc             | V <sub>CC</sub> = MAX,                          | See Note 3               |           | Condition B            |      | 7.1    | 12    |      | 7.1    | 12    | IIIA |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

- A. Enable grounded.
- B. Strobe at 4.5 V.



<sup>‡</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C.

<sup>§</sup> Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: I<sub>CC</sub> is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:

# SN54LS251 SN74LS251, (TIM9905), DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

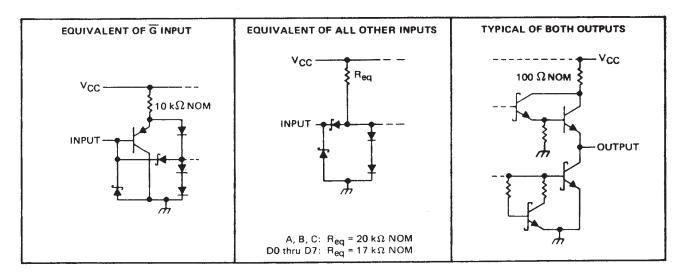
# switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER†       | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS                 | MIN | TYP  | MAX | UNIT  |
|------------------|-----------------|----------------|---------------------------------|-----|------|-----|-------|
| tPLH .           | A, B, or C      | Y              |                                 |     | 29   | 45  |       |
| <sup>t</sup> PHL | (4 levels)      | '              |                                 |     | 28   | 45  | ns    |
| tPLH .           | A, B, or C      | w              |                                 |     | 20 . | 33  | ns    |
| <sup>t</sup> PHL | (3 levels)      | "              |                                 |     | . 21 | 33  | l lis |
| ФLH              | Any D           | Y              | ]                               |     | 17   | 28  | กร    |
| ФНL              | Ally b          | <u>'</u>       | $C_L = 15 pF$ ,                 |     | 18   | 28  | 113   |
| <sup>t</sup> PLH | Any D           | w              | $R_L = 2 k\Omega$ ,             |     | 10   | 15  | กร    |
| <sup>t</sup> PHL |                 | **             | See Note 2                      |     | 9    | 15  | '''   |
| <sup>t</sup> PZH | G               | Y              | 7                               |     | 30   | 45  | ns    |
| <sup>t</sup> PZL |                 | · ·            |                                 |     | 26   | 40  | 113   |
| <sup>t</sup> PZH | G               | w              | 7                               |     | 17   | 27  | ns    |
| <sup>t</sup> PZL |                 | "              |                                 |     | 24   | 40  | '''   |
| <sup>t</sup> PHZ | Ğ               | Y<br>W         | C: - E = E                      |     | 30   | 45  | ns    |
| tPLZ             | G               |                | C <sub>L</sub> = 5 pF,          |     | 15   | 25  | 113   |
| <sup>t</sup> PHZ | Ğ               |                | $R_{L} = 2 k\Omega,$ See Note 2 |     | 37   | 55  | ns    |
| tPLZ             |                 |                | See Note 2                      |     | 15   | 25  |       |

†tpLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpZH = Output enable time to high level


 $t_{PZL}$  = Output enable time to low level

 $t_{PHZ}$  = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

#### schematics of inputs and outputs



# SN54S251 SN74S251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)              |   | <br> |  |  |  |  | <br> |  |  |    |     |     | 7 V    |
|-----------------------------------------------|---|------|--|--|--|--|------|--|--|----|-----|-----|--------|
| Input voltage                                 |   | <br> |  |  |  |  | <br> |  |  |    |     |     | 5.5 V  |
| Off-state output voltage                      |   |      |  |  |  |  |      |  |  |    |     |     | 5.5 V  |
| Operating free-air temperature range: SN54S25 | 1 | <br> |  |  |  |  | <br> |  |  | -5 | 5°C | to  | 125°C  |
| SN74S25                                       | 1 | <br> |  |  |  |  | <br> |  |  |    | 0°  | C t | o 70°C |
| Storage temperature range                     |   |      |  |  |  |  | <br> |  |  | -6 | 5°C | to  | 150°C  |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    | S   | N54S25                                | 1     | 5    | N74S2 | 51 <sub>-</sub> |      |
|------------------------------------|-----|---------------------------------------|-------|------|-------|-----------------|------|
|                                    | MIN | NOM                                   | MAX   | MIN  | NOM   | MAX             | UNIT |
| Supply voltage, V <sub>CC</sub>    | 4.5 | 5                                     | - 5.5 | 4.75 | 5     | 5.25            | V    |
| High-level output current, IOH     |     |                                       | -2    |      |       | -6.5            | mA   |
| Low-level output current, IOL      |     | · · · · · · · · · · · · · · · · · · · | 20    |      |       | 20              | mA   |
| Operating free-air temperature, TA | -55 |                                       | 125   | 0    |       | 70              | °c   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                  | PARAMETER                                       | TEST CONDITIONS†                            |                                                 |                        |        |     | TYP‡ | MAX  | UNIT   |
|------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------|--------|-----|------|------|--------|
| VIH              | High-level input voltage                        |                                             |                                                 |                        |        | 2   |      |      | V      |
| VIL              | Low-level input voltage                         |                                             |                                                 |                        |        |     |      | 0.8  | V      |
| VIK              | Input clamp voltage                             | V <sub>CC</sub> = MIN,                      | 11:                                             | = -18 mA               |        |     |      | -1.2 | V      |
| VOH              | High-level output voltage                       | V <sub>CC</sub> = MIN,                      | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = MAX |                        | SN545' | 2.4 | 3.4  |      | V      |
|                  |                                                 | V <sub>IL</sub> = 0.8 V,                    |                                                 |                        | SN745' | 2.4 | 3.2  |      | ٧      |
| VOL              | Low-level output voltage                        | V <sub>CC</sub> = MIN,                      | / <sub>CC</sub> = MIN, V <sub>IH</sub> = 2 V,   |                        |        | 1   |      | 0.5  | V      |
|                  |                                                 | V <sub>1L</sub> = 0.8 V,                    | 101                                             | _ = 20 mA              |        | 1   |      | 0.5  | "      |
| •                | Off-state (high-impedance-state) output current | V <sub>CC</sub> = MAX,                      | = MAX, V <sub>O</sub> = 2.4 V                   |                        |        |     |      | 50   | μА     |
| loz              |                                                 | V <sub>IH</sub> = 2 V                       |                                                 | V <sub>O</sub> = 0.5 V |        |     |      | -50  | μΑ     |
| l <sub>j</sub>   | Input current at maximum input voltage          | V <sub>CC</sub> = MAX,                      | VI                                              | = 5.5 V                |        |     |      | 1    | mA     |
| ЧН               | High-level input current                        | VCC = MAX,                                  | Vı                                              | = 2.7 V                |        |     |      | 50   | μА     |
| I <sub>I</sub> L | Low-level input current                         | V <sub>CC</sub> = MAX,                      | VI                                              | = 0.5 V                |        |     |      | -2   | mA .   |
| los              | Short-circuit output current §                  | V <sub>CC</sub> = MAX                       |                                                 |                        |        | -40 |      | -100 | mA     |
|                  | 0 1                                             | V <sub>CC</sub> = MAX, All inputs at 4.5 V, |                                                 |                        |        |     | 55   | 85   | mA     |
| 1CC              | Supply current                                  | All outputs open                            |                                                 |                        |        |     | 33   | 05   | . IIIA |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.  $^{\ddagger}$ AII typical values are at  $^{\lor}$ CC = 5  $^{\lor}$ C.



<sup>§</sup> Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

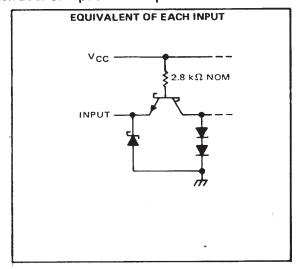
# switching characteristics, VCC = 5 V, TA = 25°C

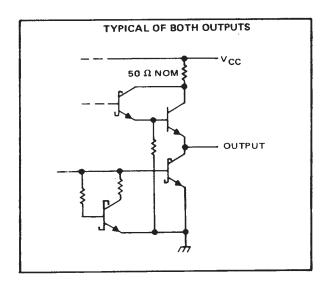
| PARAMETER <sup>†</sup> | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS         | MIN TY | MAX  | UNIT     |
|------------------------|-----------------|----------------|-------------------------|--------|------|----------|
| tPLH                   | A, B, or C      | Y              |                         | 12     | 18   | ns       |
| tPHL                   | (4 levels)      | '              |                         | 13     | 19.5 |          |
| <sup>t</sup> PLH       | A, B, or C      | w              | Cլ = 15 pF,             | 10     | 15   | ns       |
| tphl.                  | (3 levels)      | **             | RL = 280 Ω,             | 9      | 13.5 |          |
| <sup>†</sup> PLH       | Any D           | Y              | See Note 2              | 8      | 12   | ns       |
| <sup>‡</sup> PHL       | 7 71190         | '              |                         | 8      | 12   | ] "      |
| <sup>t</sup> PLH       | Any D           | w              |                         | 4.5    | 7    | ns       |
| <sup>t</sup> PHL       | 7 ^""           |                |                         | 4.5    | 7    |          |
| <sup>t</sup> PZH       | G               | Y              | C <sub>L</sub> = 50 pF, | 13     | 19.5 | ns       |
| <sup>t</sup> PZL       | 7 "             |                | R <sub>L</sub> = 280 Ω, | 14     | 21   | <u> </u> |
| <sup>t</sup> PZH       | G               | w              | See Note 2              | 13     | 19.5 | ns       |
| <sup>†</sup> PZL       | -               | **             | See Note 2              | 14     | 21   | ""       |
| <sup>†</sup> PHZ       | G               | Y              | C <sub>L</sub> = 5 pF,  | 5.5    | 8.5  | ns       |
| tPLZ                   | ٦ ،             | 1              | $R_L = 280 \Omega$ ,    | (      | 14   | ] '''    |
| <sup>†</sup> PHZ       | G               | w              | See Note 2              | 5.5    | 8.5  | ns       |
| †PLZ                   | 7               | •••            | 366 140te 2             | 9      | 14   |          |

<sup>†</sup>tpLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

t<sub>PZH</sub> = Output enable time to high level


 $t_{PZL}$  = Output enable time to low level


tpHZ = Output disable time from high level

 $t_{PLZ}$  = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

#### schematics of inputs and outputs









.com 6-Jun-2005

# **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup>              |
|------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|-------------------------------------------|
| 7601601EA        | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| 7601601FA        | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| 7601601FA        | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| 80022012A        | OBSOLETE              | LCCC            | FK                 | 20   |                | TBD                     | Call TI          | Call TI                                   |
| 80022012A        | OBSOLETE              | LCCC            | FK                 | 20   |                | TBD                     | Call TI          | Call TI                                   |
| 8002201EA        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| 8002201EA        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| 8002201FA        | OBSOLETE              | CFP             | W                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| 8002201FA        | OBSOLETE              | CFP             | W                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| JM38510/07905BEA | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| JM38510/07905BEA | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| JM38510/30905B2A | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| JM38510/30905B2A | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| JM38510/30905BEA | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| JM38510/30905BEA | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| JM38510/30905BFA | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| JM38510/30905BFA | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| SN54251J         | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN54251J         | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN54LS251J       | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| SN54LS251J       | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                     | Call TI          | Level-NC-NC-NC                            |
| SN54S251J        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN54S251J        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN74251N         | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN74251N         | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN74251N3        | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN74251N3        | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                     | Call TI          | Call TI                                   |
| SN74LS251D       | ACTIVE                | SOIC            | D                  | 16   | 40             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251D       | ACTIVE                | SOIC            | D                  | 16   | 40             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DE4     | ACTIVE                | SOIC            | D                  | 16   | 40             | Pb-Free<br>(RoHS)       |                  | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DE4     | ACTIVE                | SOIC            | D                  | 16   | 40             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DR      | ACTIVE                | SOIC            | D                  | 16   | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DR      | ACTIVE                | SOIC            | D                  | 16   | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DRE4    | ACTIVE                | SOIC            | D                  | 16   | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251DRE4    | ACTIVE                | SOIC            | D                  | 16   | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SN74LS251N       | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-NC-NC-NC                            |





ti.com 6-Jun-2005

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan (2)      | Lead/Ball Finish | n MSL Peak Temp <sup>(3)</sup>             |
|------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------|------------------|--------------------------------------------|
| SN74LS251N       | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-NC-NC-NC                             |
| SN74LS251N3      | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74LS251N3      | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74LS251NE4     | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-NC-NC-NC                             |
| SN74LS251NE4     | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-NC-NC-NC                             |
| SN74LS251NSR     | ACTIVE                | SO              | NS                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| SN74LS251NSR     | ACTIVE                | SO              | NS                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| SN74LS251NSRE4   | ACTIVE                | SO              | NS                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| SN74LS251NSRE4   | ACTIVE                | SO              | NS                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| SN74S251D        | OBSOLETE              | SOIC            | D                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74S251D        | OBSOLETE              | SOIC            | D                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74S251N        | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74S251N        | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74S251N3       | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SN74S251N3       | OBSOLETE              | PDIP            | N                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54251J        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54251J        | OBSOLETE              | CDIP            | J                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54LS251FK     | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54LS251FK     | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54LS251J      | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54LS251J      | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54LS251W      | ACTIVE                | CFP             | W                  | 16   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54LS251W      | ACTIVE                | CFP             | W                  | 16   | 1              | TBD               | Call TI          | Level-NC-NC-NC                             |
| SNJ54S251FK      | OBSOLETE              | LCCC            | FK                 | 20   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54S251FK      | OBSOLETE              | LCCC            | FK                 | 20   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54S251J       | OBSOLETE              | CDIP            | J                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54S251J       | OBSOLETE              | CDIP            | J                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54S251W       | OBSOLETE              | CFP             | W                  | 16   |                | TBD               | Call TI          | Call TI                                    |
| SNJ54S251W       | OBSOLETE              | CFP             | W                  | 16   |                | TBD               | Call TI          | Call TI                                    |

 $<sup>^{(1)}</sup>$  The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements

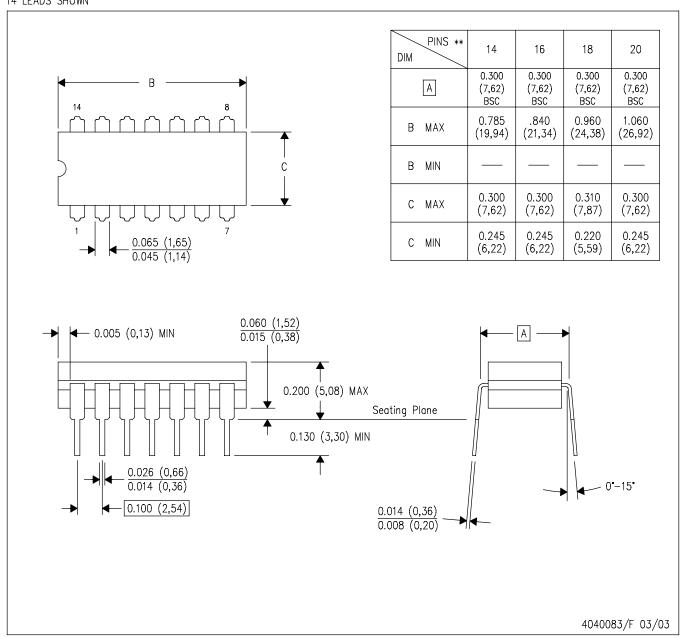
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.



## PACKAGE OPTION ADDENDUM

6-Jun-2005

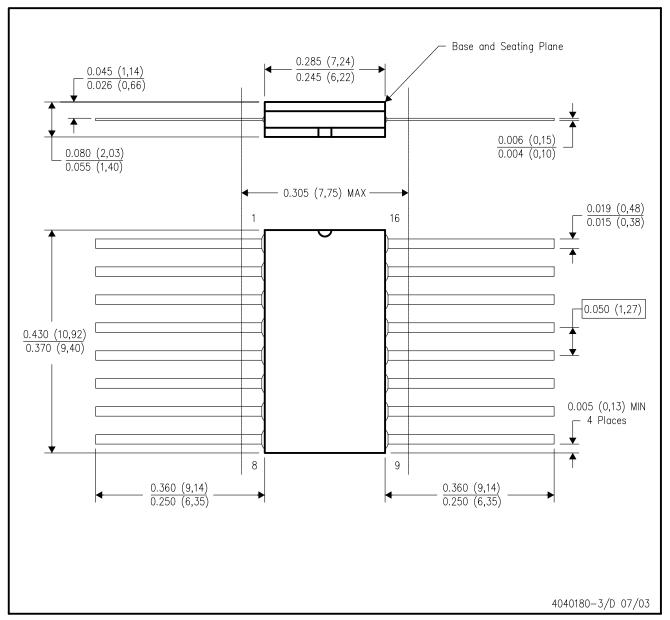
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# 14 LEADS SHOWN

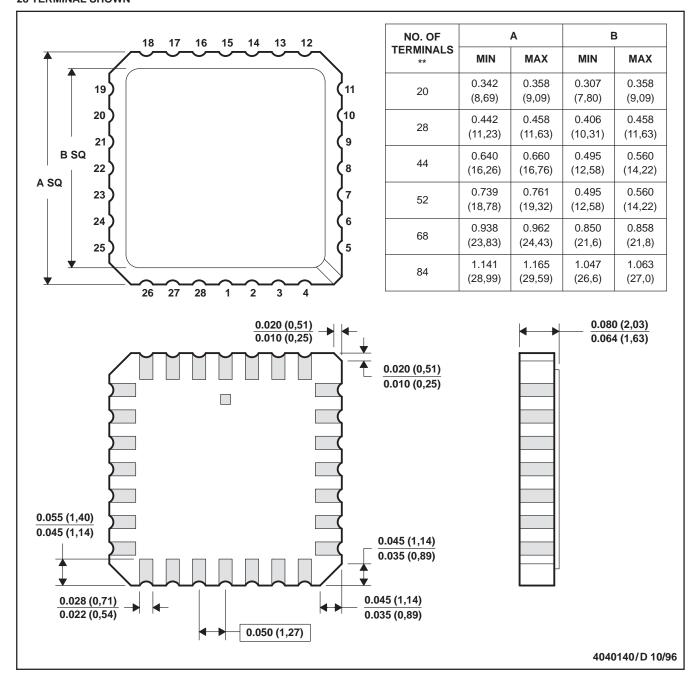


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

# W (R-GDFP-F16)

# CERAMIC DUAL FLATPACK




- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC



## FK (S-CQCC-N\*\*)

#### **28 TERMINAL SHOWN**

#### **LEADLESS CERAMIC CHIP CARRIER**



NOTES: A. All linear dimensions are in inches (millimeters).

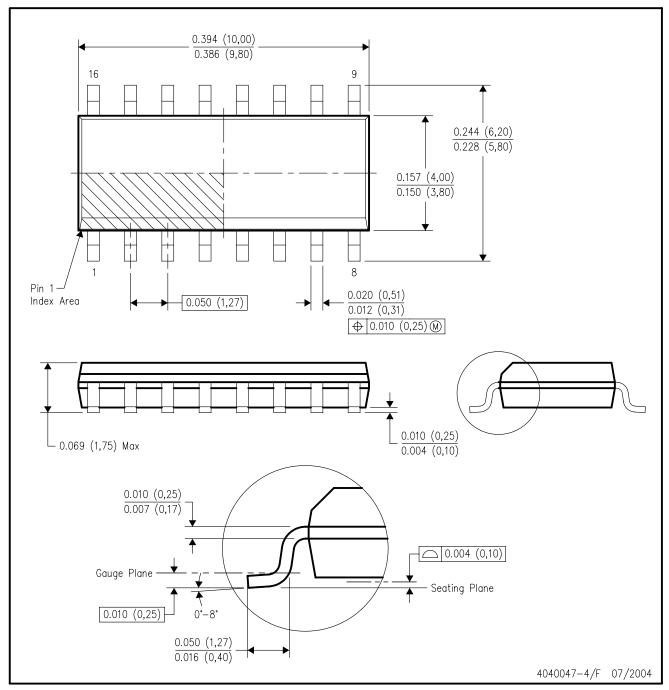
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004



# N (R-PDIP-T\*\*)

# PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN




- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

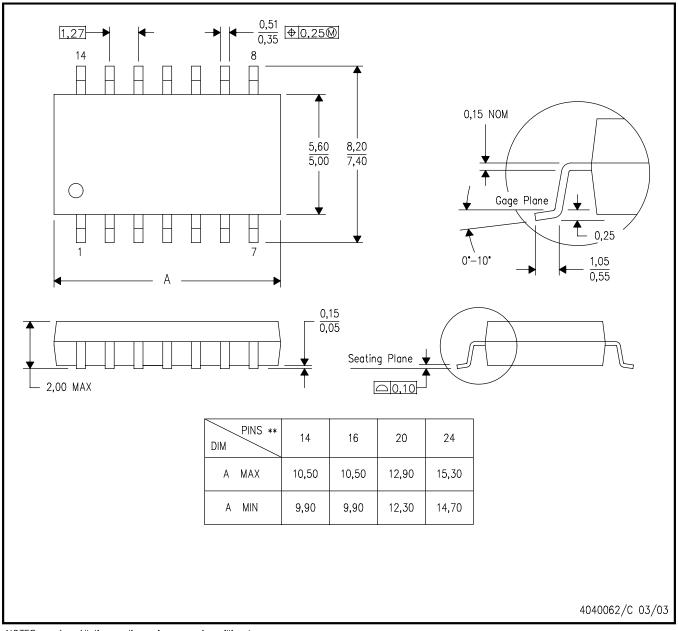


# D (R-PDSO-G16)

# PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.




# **MECHANICAL DATA**

# NS (R-PDSO-G\*\*)

# 14-PINS SHOWN

# PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated