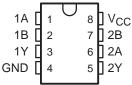
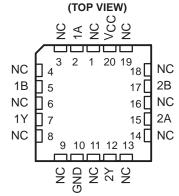
SLRS021B - DECEMBER 1976 - REVISED SEPTEMBER 1999


PERIPHERAL DRIVERS FOR HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 20 V (After Conducting 300 mA)
- High-Speed Switching
- Circuit Flexibility for Varied Applications
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame Provides Cooler Operation and Improved Reliability
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs


SUMMARY OF DEVICES

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN55451B	AND	FK, JG
SN55452B	NAND	JG
SN55453B	OR	FK, JG
SN55454B	NOR	JG
SN75451B	AND	D, P
SN75452B	NAND	D, P
SN75453B	OR	D, P
SN75454B	NOR	D, P

SN55451B, SN55452B SN55453B, SN55454B . . . FK PACKAGE

NC - No internal connection

description

The SN55451B through SN55454B and SN75451B through SN75454B are dual peripheral drivers designed for use in systems that employ TTL logic. This family is functionally interchangeable with and replaces the SN75450 family and the SN75450A family devices manufactured previously. The speed of the devices is equal to that of the SN75450 family, and the parts are designed to ensure freedom from latch-up. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively (assuming positive logic), with the output of the logic gates internally connected to the bases of the npn output transistors.

The SN55' drivers are characterized for operation over the full military range of –55°C to 125°C. The SN75' drivers are characterized for operation from 0°C to 70°C.

SN55451B, SN55452B, SN55453B, SN55454B SN75451B, SN75452B, SN75453B, SN75454B DUAL PERIPHERAL DRIVERS

SLRS021B – DECEMBER 1976 – REVISED SEPTEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55'	SN75'	UNIT	
Supply voltage, V _{CC} (see Note 1)		7	7	V	
Input voltage, V _I	Input voltage, V _I				
Inter-emitter voltage (see Note 2)	Inter-emitter voltage (see Note 2)				
Off-state output voltage, VO		30	30	V	
Continuous collector or output current, IOK (see Note 3)	400	400	mA		
Peak collector or output current, I _I ($t_W \le 10$ ms, duty cycle $\le 50\%$, se	500	500	mA		
Continuous total power dissipation		See Dissipation Rating Table			
Operating free-air temperature range, TA		-55 to 125	0 to 70	°C	
Storage temperature range, T _{Stg}		-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds	FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package		260	°C	

- NOTES: 1. Voltage values are with respect to network GND, unless otherwise specified.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor.
 - 3. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 500 Ω .
 - 4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	A		T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	_

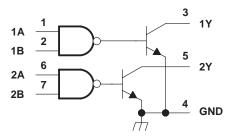
recommended operating conditions

	SN55'			SN75'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			2			V
Low-level input voltage, V _{IL}			0.8			0.8	V
Operating free-air temperature, TA	-55		125	0		70	°C

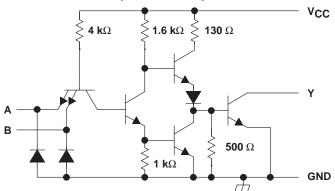
logic symbol†

1A $\frac{1}{2}$ & \bigcirc 3 1Y 2A $\frac{6}{7}$ 2B $\frac{5}{2}$ 2Y

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.


Pin numbers shown are for the D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Y
L	L	L (on state)
L	Н	L (on state)
Н	L	L (on state)
Н	Н	H (off state)

positive logic: Y = AB or A+B

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	DADAMETED	TEST 001	DITIONOT	S	N55451E	3	SN75451B			UNIT
	PARAMETER	TEST CONDITIONS‡		MIN	TYP§	MAX	MIN	TYP§	MAX	UNII
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
Vai	Low-level output voltage	V _{CC} = MIN, I _{OL} = 100 mA	V _{IL} = 0.8 V,		0.25	0.5		0.25	0.4	V
VOL		V _{CC} = MIN, I _{OL} = 300 mA	V _{IL} = 0.8 V,		0.5	0.8		0.5	0.7	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 30 V	V _{IH} = MIN,			300			100	μΑ
Ц	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lіН	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
Ι _{ΙL}	Low-level input current	$V_{CC} = MAX$,	$V_{I} = 0.4 \ V$		-1	-1.6		-1	-1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 5 V		7	11		7	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 0		52	65		52	65	mA

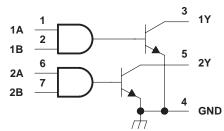
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

	PARAMETER			TEST CONDITIONS			MAX	UNIT
tPLH	Propagation delay time, low-to-high-level	output				18	25	
tPHL	Propagation delay time, high-to-low-level	-to-low-level output		C _L = 15 pF, See Figure 1		18	25	20
tTLH			$R_L = 50 \Omega$,			5	8	ns
tTHL	THL Transition time, high-to-low-level output		1			7	12	
\/a	V	SN55451B	V _S = 20 V,	I _O ≈ 300 mA,		V _S -6.5		mV
VOH	High-level output voltage after switching	SN75451B	See Figure 2		V _S -6.5			1117

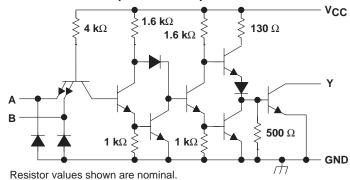
[§] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.


Pin numbers shown are for the D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Y
L	L	H (off state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	L (on state)

positive logic: $Y = \overline{AB}$ or $\overline{A+B}$

logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

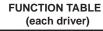
	PARAMETER	TEST COL	IDITIONST	S	N55452E	8	SN75452B			UNIT
	PARAMETER	TEST CONDITIONS‡		MIN	TYP§	MAX	MIN	TYP§	MAX	UNII
٧ıK	Input clamp voltage	$V_{CC} = MIN,$	$I_{ } = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
Vai	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	V _{IH} = MIN,		0.25	0.5		0.25	0.4	V
VOL		$V_{CC} = MIN,$ $I_{OL} = 300 \text{ mA}$	V _{IH} = MIN,		0.5	0.8		0.5	0.7	
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 30 V	V _{IL} = 0.8 V,			300			100	μΑ
II	Input current at maximum input voltage	$V_{CC} = MAX$,	$V_{I} = 5.5 \ V$			1			1	mA
lіН	High-level input current	$V_{CC} = MAX$,	$V_{ } = 2.4 \text{ V}$			40			40	μΑ
IIL	Low-level input current	$V_{CC} = MAX$,	$V_{I} = 0.4 \ V$		-1.1	-1.6		-1.1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 0		11	14		11	14	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 5 V		56	71		56	71	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

	PARAMETER			TEST CONDITIONS			MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output					26	35	
tPHL	Propagation delay time, high-to-low-level output		I _O ≈ 200 mA,			24	35	20
[†] TLH	Ln Transition time, low to high level output		$R_L = 50 \Omega$,	See Figure 1		5	8	ns
[†] THL						7	12	
Va	High-level output voltage after switching	SN55452B	Vs = 20 V,	I _O ≈ 300 mA,		V _S -6.5		mV
VOH	nigri-level output voltage after switching	SN75452B	See Figure 2	_	Vg-6.5			IIIV

[§] All typical values are at V_{CC} = 5 V, T_A = 25°C.

logic symbol†


† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.

Pin numbers shown are for the D, JG, and P packages.

schematic (each driver)

logic diagram (positive logic)

Α	В	Υ
L	L	L (on state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	H (off state)

positive logic: $\underline{\underline{}}$ Y = A+B or $\overline{A}\overline{B}$

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST SON	DITIONOT	8	N55453E	3	SN75453B			UNIT
	PARAMETER	TEST CONDITIONS‡		MIN	TYP§	MAX	MIN	TYP§	MAX	UNII
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{ } = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
\/a.	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	V _{IL} = 0.8 V,		0.25	0.5		0.25	0.4	٧
VOL		V _{CC} = MIN, I _{OL} = 300 mA	V _{IL} = 0.8 V,		0.5	0.8		0.5	0.7	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 30 V	V _{IH} = MIN,			300			100	μΑ
Ц	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lн	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1	-1.6		-1	-1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX,$	V _I = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	V _I = 0		54	68		54	68	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

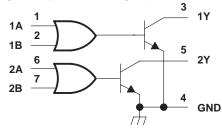
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level				18	25		
tPHL	Propagation delay time, high-to-low-level	I _O ≈ 200 mA,	C _L = 15 pF,		18	25	no	
tTLH				See Figure 1		5	8	ns
tTHL	Transition time, high-to-low-level output	1			7	12		
\/a	High level output voltage offer switching	SN55453B	$V_{S} = 20 \text{ V},$	$I_O \approx 300 \text{ mA},$		V _S -6.5		mV
VOH	High-level output voltage after switching	SN75453B	See Figure 2		V _S -6.5			mv

[§] All typical values are at V_{CC} = 5 V, T_A = 25°C.

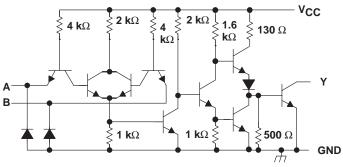
SLRS021B - DECEMBER 1976 - REVISED SEPTEMBER 1999

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.


Pin numbers shown are for the D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Υ
L	L	H (off state)
L	Н	L (on state)
Н	L	L (on state)
Н	Н	L (on state)

positive logic: $Y = \overline{A+B}$ or \overline{AB}

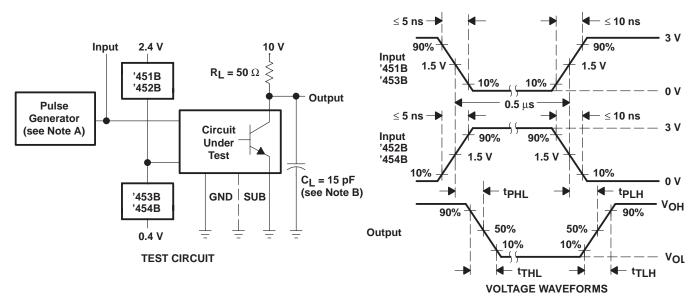
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

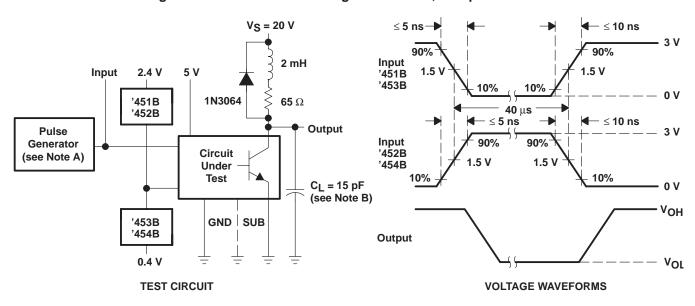
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CON	SN55454B			SN75454B			UNIT	
		TEST CONDITIONS‡		MIN	TYP§	MAX	MIN	TYP§	MAX	UNIT
٧ıK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
V 6.	Low lovel output voltage	V _{CC} = MIN, I _{OL} = 100 mA	V _{IH} = MIN,		0.25	0.5		0.25	0.4	V
VOL	Low-level output voltage	V _{CC} = MIN, I _{OL} = 300 mA	V _{IH} = MIN,		0.5	0.8		0.5	0.7	v
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 30 V	V _{IL} = 0.8 V,			300			100	μΑ
lį	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lн	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
Ι _Ι L	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1	-1.6		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 0		13	17		13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 5 V		61	79		61	79	mA


For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output				27	35		
tPHL	Propagation delay time, high-to-low-level output	I _O ≈ 200 mA,	$C_L = 15 pF$,		24	35	20	
tTLH	Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		5	8	ns	
tTHL	Transition time, high-to-low-level output				7	12		
I V _O ⊔ High-level output voltage after switching ⊢		SN55454B	V _S = 20 V,	I _O ≈ 300 mA,		V _S -6.5		mV
		SN75454B	See Figure 2		V _S -6.5			1117

[§] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω .

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms, Complete Drivers

NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, Z_{O} = 50 Ω .

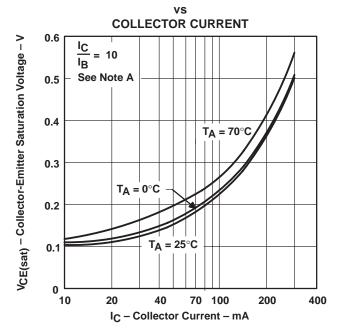

B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test of Complete Drivers

SLRS021B – DECEMBER 1976 – REVISED SEPTEMBER 1999

TYPICAL CHARACTERISTICS

TRANSISTOR COLLECTOR-EMITTER SATURATION VOLTAGE

NOTE A: These parameters must be measured using pulse techniques, $t_{\text{W}}=300~\mu\text{s},$ duty cycle $\leq 2\%.$

Figure 3

.com 3-Jun-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
5962-9563301Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
5962-9563301QPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
77049012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
7704901PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
77049022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
7704902PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
JM38510/12902BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
JM38510/12903BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
JM38510/12905BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SN55451BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SN55452BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SN55453BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SN55454BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SN75451BD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75451BDE4	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75451BDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75451BDRE4	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75451BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN75451BPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75451BPSRE4	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BDE4	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BDRE4	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN75452BPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75452BPSRE4	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75453BD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75453BDE4	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75453BDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

i.com 3-Jun-2005

SN75453BDRE4		Туре	Drawing		Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75453BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN75453BPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75453BPSRE4	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BDE4	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BDRE4	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN75454BPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN75454BPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN75454BPSRE4	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SNJ55451BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
SNJ55451BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SNJ55452BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
SNJ55452BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SNJ55453BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
SNJ55453BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SNJ55454BFK	OBSOLETE	LCCC	FK	20		TBD	POST-PLATE	Level-NC-NC-NC
SNJ55454BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

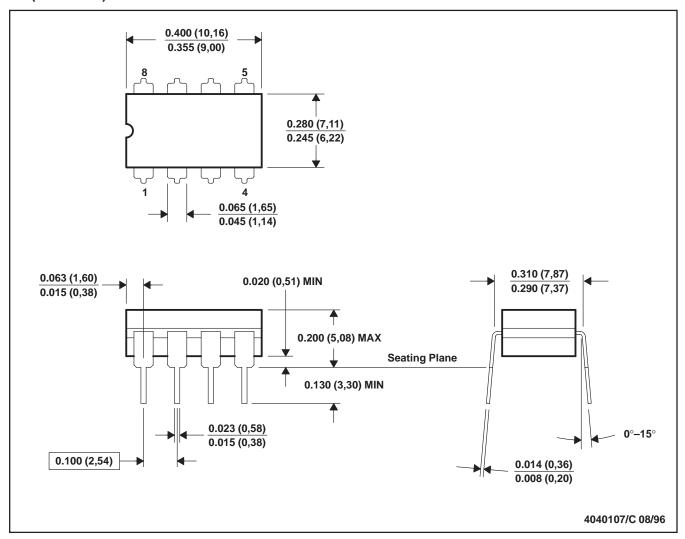
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

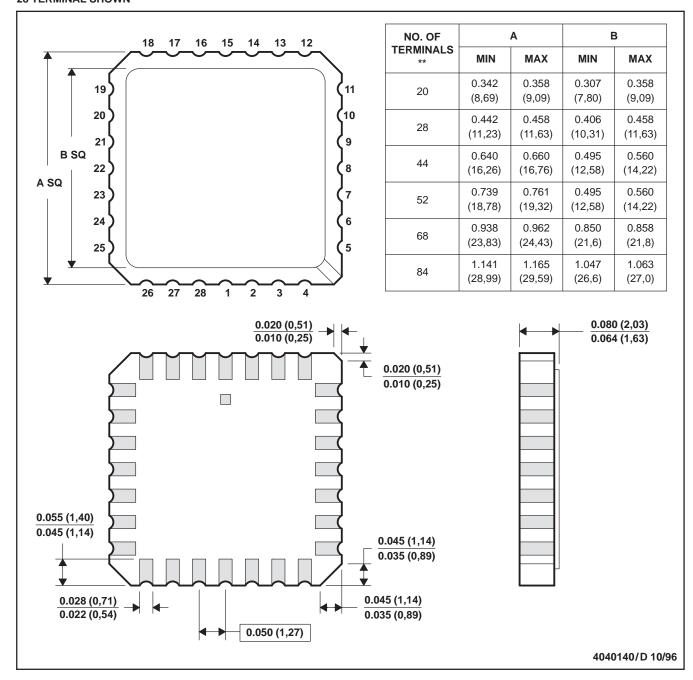

3-Jun-2005

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

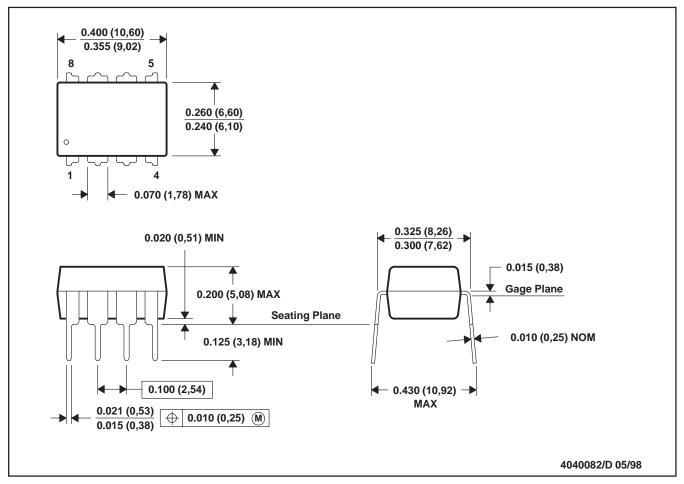

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

28 TERMINAL SHOWN

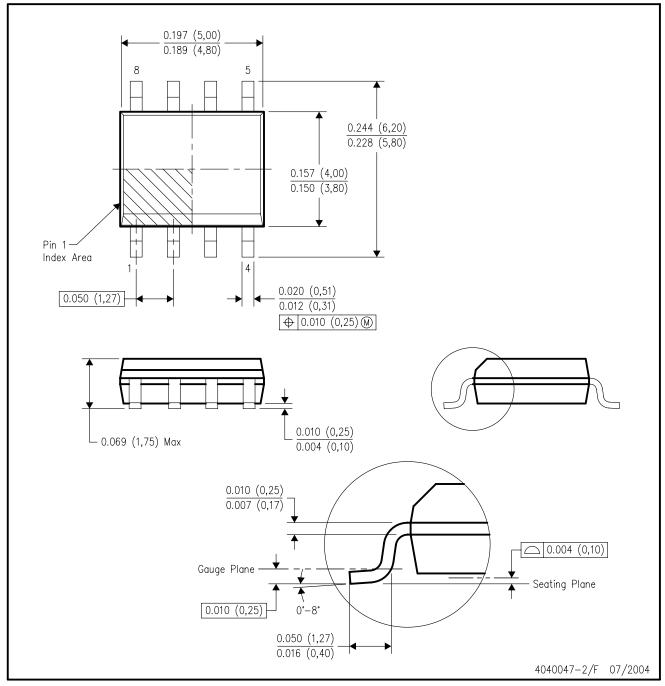
LEADLESS CERAMIC CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

P (R-PDIP-T8)

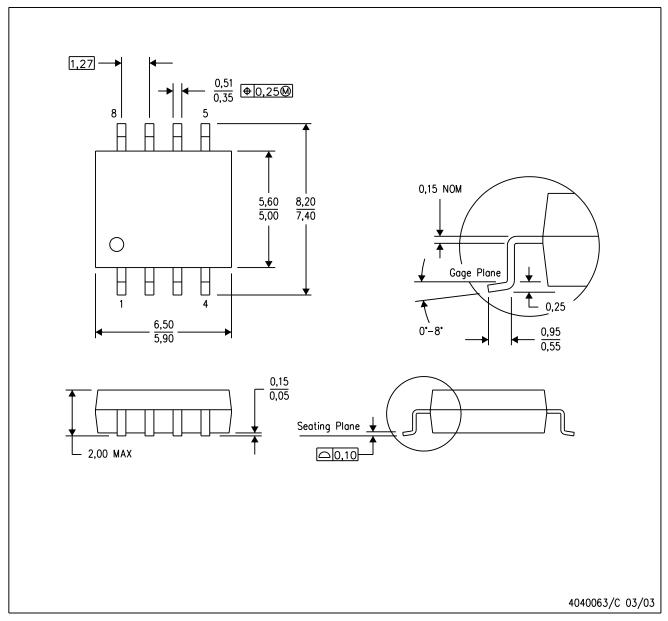
PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated